Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Biosci ; 11(1): 14, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431046

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder primarily characterized by selective degeneration of both the upper motor neurons in the brain and lower motor neurons in the brain stem and the spinal cord. The exact mechanism for the selective death of neurons is unknown. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. Many patients with ALS exhibit metabolic changes such as hypermetabolism and body weight loss. Despite these whole-body metabolic changes being observed in patients with ALS, the origin of metabolic dysregulation remains to be fully elucidated. A number of pre-clinical studies indicate that underlying bioenergetic impairments at the cellular level may contribute to metabolic dysfunctions in ALS. In particular, defects in CNS glucose transport and metabolism appear to lead to reduced mitochondrial energy generation and increased oxidative stress, which seem to contribute to disease progression in ALS. Here, we review the current knowledge and understanding regarding dysfunctions in CNS glucose metabolism in ALS focusing on metabolic impairments in glucose transport, glycolysis, pentose phosphate pathway, TCA cycle and oxidative phosphorylation. We also summarize disturbances found in glycogen metabolism and neuroglial metabolic interactions. Finally, we discuss options for future investigations into how metabolic impairments can be modified to slow disease progression in ALS. These investigations are imperative for understanding the underlying causes of metabolic dysfunction and subsequent neurodegeneration, and to also reveal new therapeutic strategies in ALS.

2.
J Neurochem ; 151(2): 139-165, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318452

RESUMO

The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Neuroquímica/educação , Estudantes , Animais , Astrócitos/metabolismo , Congressos como Assunto/tendências , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo
3.
Mol Neurobiol ; 56(8): 5844-5855, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30685842

RESUMO

Impairments in energy metabolism in amyotrophic lateral sclerosis (ALS) have long been known. However, the changes in the energy-producing pathways in ALS are not comprehensively understood. To investigate specific alterations in glucose metabolism in glycolytic, pentose phosphate, and TCA cycle pathways, we injected uniformly labeled [U-13C]glucose to wild-type and hSOD1G93A mice at symptom onset (80 days). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), levels of metabolites were determined in extracts of the cortex and spinal cord. In addition, the activities of several enzymes involved in glucose metabolism were quantified. In the spinal cord, the levels of pentose phosphate pathway (PPP) intermediate ribose 5-phosphate (p = 0.037) were reduced by 37% in hSOD1G93A mice, while the % 13C enrichments in glucose 6-phosphate were increased threefold. The maximal activities of the enzyme glucose 6-phosphate dehydrogenase were decreased by 24% in the spinal cord (p = 0.005), suggesting perturbations in the PPP. The total amount of pyruvate in the cortex (p = 0.039) was reduced by 20% in hSOD1G93A mice. Also, the activities of the glycolytic enzyme pyruvate kinase were reduced in the cortex by 31% (p = 0.002), indicating alterations in glycolysis. No significant differences were seen in the total amounts as well as % 13C enrichments in most TCA cycle intermediates, suggesting largely normal TCA cycle function. On the other hand, oxoglutarate dehydrogenase activity was decreased in the cortex, which may indicate increased oxidative stress. Overall, this study revealed decreased activity of the PPP in the spinal cord and alterations in glycolysis in hSOD1G93A mouse CNS tissues at the early symptomatic stage of disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Via de Pentose Fosfato , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/metabolismo , Animais , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Glicólise , Humanos , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos
4.
J Neurochem ; 132(5): 532-545, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25345404

RESUMO

As reported previously, in the lithium-pilocarpine model of temporal lobe epilepsy (TLE), carisbamate (CRS) produces strong neuroprotection, leads to milder absence-like seizures, and prevents behavioral impairments in a subpopulation of rats. To understand the metabolic basis of these effects, here we injected 90 mg/kg CRS or vehicle twice daily for 7 days starting 1 h after status epilepticus (SE) induction in rats. Two months later, we injected [1-13 C]glucose and [1,2-13 C]acetate followed by head microwave fixation after 15 min. 13 C incorporation into metabolites was analyzed using 13 C magnetic resonance spectroscopy. We found that SE reduced neuronal mitochondrial metabolism in the absence but not in the presence of CRS. Reduction in glutamate level was prevented by CRS and aspartate levels were similar to controls only in rats displaying absence-like seizures after treatment [CRS-absence-like epilepsy (ALE)]. Glutamine levels in CRS-ALE rats were higher compared to controls in hippocampal formation and limbic structures while unchanged in rats displaying motor spontaneous recurrent seizures after treatment (CRS-TLE). Astrocytic mitochondrial metabolism was reduced in CRS-TLE, and either enhanced or unaffected in CRS-ALE rats, which did not affect the transfer of glutamine from astrocytes to neurons. In conclusion, CRS prevents reduction in neuronal mitochondrial metabolism but its effect on astrocytes is likely key in determining outcome of treatment in this model. To understand the metabolic basis of the strong neuroprotection and reduction in seizure severity caused by carisbamate (CRS) in the lithium-pilocarpine (Li-Pilo) model of temporal lobe epilepsy (TLE), we injected CRS for 7 days starting 1 h after status epilepticus and 2 months later [1-13 C]glucose and [1,2-13 C]acetate. 13 C Magnetic resonance spectroscopy analysis was performed on brain extracts and we found that CRS prevented reduction in neuronal mitochondrial metabolism but its effect on astrocytes was likely key in determining outcome of treatment in this model. ALE = absence like epilepsy; acetyl CoA = acetyl coenzyme A; GS = glutamine synthetase; PAG = phosphate activated glutaminase; PC = pyruvate carboxylase; OAA = oxaloacetate; TCA cycle = tricarboxylic acid cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...